$17-12-20$.
(E): $a_{2}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{0}(x) y=0$,
onou a2, a1, ao eival ouvexeis ouvaprñoels of हैva diáointea I ens

Eva onlueio xocI $\mu \varepsilon a_{2}\left(x_{0}\right) \neq 0$ तèje òtा ह́lval eva ohoado onhesio uns d.e. (E) av-v al ouraprioas ailaq kal do laz eival avodurike's oro x_{0}.
 toi hia rouतáxigtov an' tis ơvo ouvapeñoes allar kal aolaz dev

 arwhaio onkeio ens (E) av-v unapxouv dvio ouvapenoas Al kal Ao He redía opiofooú D1 kal Do avcioroxa lónou Xo D_{1} n Do kol
$D_{1} \leqslant I$, Do $\leqslant I$) ol onoies eival avaduake's जo xo tézoles wor $\left(x-x_{0}\right) a_{1}(x)=a_{2}(x) A_{1}(x), x \in D_{1}$ kar $\left(x-x_{0}\right)^{2} a_{0}(x)=a_{2}(x) A_{0}(x) ; x \in D_{0}$. Eva avwi้hado onfreio ens (E) nou dेev sival ह̀va kavovikó avúh ado onfleio ens dépr òt घival èva fin karovikó avẃhado onkrio ens \&.E. (E).
(IIV) Mapàdarfa 1I: Na Bpeqoiv ta ohaAda, ta Kavovika ka lin kavoviká avcúpiada onheia fía kaөع fua anó tis napakatw:
(i) $y^{\prime \prime}+(\cos x) y^{\prime}+e^{x} y=0, x \in \mathbb{R}$
(ii) $(x-2) y^{\prime \prime}+(\sin 2 x) y^{\prime}+\left(x^{2}+1\right) y=0, x \in \mathbb{R}$
(iii) $y^{\prime \prime}+|x| y^{\prime}+(x+1)^{1 / 3} y=0, x \in \mathbb{R}$
(iv) $\left(x^{4}-x^{2}\right) y^{\prime \prime}+(2 x+1) y^{\prime}+x^{2}(x+1) y=0, x \in \mathbb{R}$.

Dưon: (i) $a_{2}(x)=1, a_{1}(x)=\cos x, a_{0}(x)=e^{x}$
(ii) $0_{2}(x)=x-2, a_{1}(x)=\sin 2 x, \alpha_{0}(x)=x^{2}+1, x \neq 2$
$x=2+\varepsilon, a_{2}(x)=0$

$x_{0}=2: \frac{a_{2}(x)}{a_{2}(x)} \cdot\left(x-x_{0}\right)=\frac{(x-2) \cdot \sin 2 x}{(x-2)}=\sin 2 x \rightarrow$ avaduaicn.

$$
\begin{aligned}
& \frac{a_{0}(x)}{a_{2}(x)}\left(x-x_{0}\right)^{2}=\frac{x^{2}+1}{x-2}(x-2)^{2}=(x+1)(x-2) . \\
& \text { (Hii) } a_{2}(x)=1, a_{1}(x)=|x|, a 0(x)=\sqrt[3]{x+1} \\
& x_{1}=0 \\
& a_{1}(x) \\
& a_{2}(x) \\
& a_{2}(x)=\frac{|x| \cdot x}{1}=x \cdot|x| \\
& x_{2}=-1 \left\lvert\, \frac{a_{0}(x) \cdot x=\frac{\sqrt[3]{x+1}}{a_{2}(x)} \cdot x=x \cdot \sqrt[3]{x+1}}{1}\right.
\end{aligned}
$$

(iv) $a_{2}(x)=x^{4}-x^{2}=x^{2}\left(x^{2}-1\right), 0_{1}(x)=2 x+1, a_{0}(x)=x^{2}(x+1)$;

Anò to $a_{2}(x)$ हंхоинध: $x_{1}=0, x_{2}=1, x_{3}=-1$

$$
x_{1}=0: \frac{a 1(x)}{a_{2}(x)}=\frac{2 x+1}{x^{2}\left(x^{2}-1\right)} \cdot x=\frac{2 x+1}{x\left(x^{2}-1\right)}
$$

$x_{1}=1: \frac{a_{1}(x)(x-1)}{a_{2}(x)}=\frac{2 x+1}{x^{2}\left(x^{2}-1\right)}(x-1)=\frac{(2 x+1)(x-1)}{x^{2}(x-1)(x+1)}=\frac{2 x+1}{x^{2}(x+1)} \quad$ kal

$$
\begin{aligned}
& a_{2}(x) \quad x^{2}\left(x^{2}-1\right) \quad x^{2}(x-1)(x+1) \\
& \frac{a_{0}(x)}{a_{1}(x)}(x-1)^{2}=\frac{y^{2}(x+1)}{x^{2}(x-1)(x+1)} \cdot(x-1)^{2}=(x-1)
\end{aligned}
$$

Oemphuar:'Enw èva Kavoviko avwihado onherio xo चns J.e. (E) kai övio ouvaprioas A1 kal Ao fe redia op of hoú D1 kal Do (ónou xo $\in D_{1} \cap D_{0} k a 1 D_{1} \leqslant I$ kal $D_{0} \leq I$) rov sival ava auelke's ro xo kal Tétoles w're:

$$
\left(x-x_{0}\right) a_{1}(x)=a_{2}(x) A_{1}(x), x \in D_{1} \text { kal }\left(x-x_{0}\right)^{2} a_{0}(x)=a_{2}(x) A_{2}(x), x \in D_{2}
$$ As eival $\sum_{n=0} p n \cdot\left(x-x_{0}\right)^{n}$ tal $\sum_{n=0} q n \cdot\left(x-x_{0}\right)^{n} 8$ vio Juvaleo oép és μ e Orikés akrives oúgtaions R1 kal R2 avrioioixa r.w.:

$A_{1}(x)=\sum_{p n}\left(x-x_{0}\right)^{n}$ f $1 a\left|x-x_{0}\right|<R_{1}$ kal

$$
A_{2}(x)=\sum_{q n}\left(x-x_{0}\right)^{n} \text { f }|a| x-x_{0} \mid<R_{2}
$$

As eival $R=\min \left\{R_{1}, R_{2}\right\}$ kal λ_{1}, λ_{2} ol pizes ens esiowons: $p(\lambda) \equiv \lambda^{2}+(p o-1) \lambda+q 0=0$ цe Re $\lambda_{1} \geqslant \operatorname{Re} a_{2}$.

$y_{1}(x)=\left|x-x_{0}\right|^{\lambda_{1}} \sum c n\left(x-x_{0}\right)^{n}$ ria $0<\left|x-x_{0}\right|<R \quad$ ue $c_{0}=1$.

Mia äaan avion y2 ens (E) t.w. ol y1, y2 va sival rp. aves, Bpioketal: (i) Av $\lambda_{1}-\lambda_{2} \quad 8$ हv eival aképaios zo're:
$y_{2}(x)=\left|x-x_{0}\right|^{\lambda 2} \cdot \sum_{n=0}^{0} d n\left(x-x_{0}\right)^{n}$ діа $0<\left|x-x_{0}\right|<R \quad \mu \varepsilon d o=1$.
(ii) $A_{v} \lambda_{1}=\lambda_{2}$:
$y_{2}(x)=y_{1}(x) \log \left|x-x_{0}\right|+\left|x-x_{0}\right|^{a_{2}} \sum_{n=0}^{\infty} d n\left(x-x_{0}\right)^{n}$ y $10 \quad 0<\mid x-x_{0}<R$ uع do $=0$.
(iii) Av $\lambda_{1}-\lambda_{2}$ घivai Orrikós atzpaios, то́ ε :
$y_{2}(x)=c y 1(x) \log \left|x-x_{0}\right|+\left|x-x_{0}\right|^{\lambda 2} \sum_{n=0}^{\infty} d n\left(x-x_{0}\right)^{n}$ fıa $0<\left|x-x_{0}\right|<R$ kou $d_{0}=1$, дla károia raө \&pá с (urop ei kai $c=0$).
(110) Aoknon 2, oहत. 265: $2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=0$, $x_{0}=0$

Aion:(i) $a_{2}(x)=2 x^{2}, a_{1}(x)=-x, a_{0}(x)=\left(1-x^{2}\right)$

$$
\begin{aligned}
& a_{2}\left(x_{0}\right)=a_{2}(0)=0 \leadsto \frac{a_{2}(x)}{a_{2}(x)}(x-0)^{2}=\frac{-x}{2 x^{2}} x=\frac{-1}{2}=p_{0} \quad, R_{1}=+\infty \\
& A_{1}(x)
\end{aligned}
$$

$$
A_{2}(x)=\frac{a_{0}(x)}{a_{2}(x)} x^{2}=\frac{1-x^{2}}{2 x^{2}} \cdot x^{2}=\frac{1-x^{2}}{2}=\frac{1}{2}-\frac{1 x^{2}}{2} \rightarrow q_{0}=\frac{1}{2}, \quad R_{2}=+\infty
$$

$$
\Rightarrow R=\min \left\{R_{1}, R_{2}\right\}=+\infty
$$

Evorikrikn: $\lambda^{2}+\left(p_{0}-1\right) \lambda+g_{0}=0$

$$
\begin{aligned}
& \Rightarrow \lambda^{2}+\left(-\frac{3}{2}\right) \lambda+\frac{1}{2}=0 \sum \lambda_{1}=1 \\
& y_{1}(x)=|x-0|^{\lambda_{1}} \sum_{n=0}^{\infty} c_{n} \cdot(x-0)^{n}, \lambda_{2}=1 \mid 2=1, R=+\infty \\
& \Rightarrow y_{1}(x)=|x| \cdot \sum_{n=0}^{\infty} c_{n} \cdot x^{n}, R=+\infty \\
& x>0: y_{1}(x)=x \cdot \sum_{n=0}^{\infty} c_{n} \cdot x^{n} \Rightarrow y_{1}(x)=\sum_{n=0}^{\infty} c n \cdot x^{n+1} \\
& 0=2 x^{2} y 1_{1}^{\prime \prime}-x y_{1}^{1}+\left(1-x^{2}\right) y_{1}=2 x^{2} \sum_{n=1}^{\infty} c_{n}(n+1) \cdot n \cdot x^{n+1}-x \cdot \sum_{n=0}^{\infty} c n \cdot(n+1) \cdot x^{n}+ \\
& +\sum_{n=0}^{\infty} c_{n} \cdot x^{n+1}-\sum_{n=0}^{\infty} c n \cdot x^{n+3}= \\
& =\sum_{n=1}^{\infty} 2 \cdot c_{n} \cdot(n+1) \cdot n \cdot\left(x^{n+1}\right)-\sum_{n=0}^{\infty} c_{n} \cdot(n+1) \cdot\left(x^{n+2}\right)+\sum_{n=0}^{\infty} c n \cdot\left(x^{n+1)}-\sum_{n=0}^{\infty} c n \cdot x^{n+3}=\right.
\end{aligned}
$$

$$
\begin{aligned}
& =2 \cdot c 1 \cdot 2 \cdot 1 \cdot x^{2}+\sum_{n=2}^{\infty} 2 \cdot\left(n \cdot(n+1) \cdot n \cdot x^{n+1}-\cos 1 \cdot x-c 1 \cdot 2 x^{2}-\sum_{n=2}^{\infty} c_{n} \cdot(n+1) x^{n+1}+\right. \\
& +c_{0}-x+c 1 \cdot x^{2}+\sum_{n=2}^{\infty} c_{n} \cdot x^{n+1}-\sum_{n=2}^{\infty} c_{n-2} \cdot x^{n+1}= \\
& =\left(4 \cdot(1-2 c 1+c 1) \cdot x^{2}+\sum_{n=2}^{\infty}\left[2 n(n+1) c n-(n+1)(n+c n-c n-2] x^{n+1}\right.\right. \\
& \rightarrow(2 n(n+1)-(n+1)+1) c n=c n-2 \Rightarrow\left(2 n^{2}+2 n-n-1+1\right) \quad c n=c n-2 \\
& \text { + } 3 C 1=0 \\
& \Rightarrow\left(2 n^{2}+n\right) c n=C n-2 \\
& \Rightarrow c n=\frac{1}{n(2 n+1)} \cdot c^{n}-2, n \geqslant 2 \quad \mathrm{C}_{c_{1}=0} \\
& n=2 k+1:\left(2 k+1=\frac{1}{(2 k+1)(4 k+3)} \cdot(2 k-1, \quad 2 k+1 \geqslant 2 \Rightarrow k \geqslant 1 / 2 .\right. \\
& \text { (} C_{1}=0 \text {) } \\
& \text { Tia } k=1: c 3=\ldots=0 \\
& \text { ria } k=k: c 2 k+1=\ldots=0, k \geqslant 0 \\
& n=2 k: c 2 k=\frac{1}{2 k(4 k+1)} c 2 k-2,2 k \geqslant 2 \Rightarrow k \geqslant 1 \text {. } \\
& \Gamma_{1 a} k=L_{:} \quad c_{2}=\frac{1}{2.5} c_{0}=\frac{1}{10} \cdot c_{0} \\
& \Gamma_{1 a} k=2: \quad c_{4}=\frac{1}{4.9} \quad c_{2} \\
& \text { Tia } k=k: c 2 t=\frac{1}{2 k(4 k+1)} \cdot c 2 k-2 \text {. } \\
& c 2 k=\frac{1}{2 k \cdot 5 \cdot 4 \cdot(4 k+1)}, \quad k \geqslant 1 \\
& y_{1}(x)=|x| \cdot \sum_{n=0}^{\infty} e n \cdot x^{n}=|x| \cdot \sum_{n=0}^{\infty} C_{2 n} \cdot x^{2 n} \text { oòte: } \lambda_{1}-\lambda_{2}=\frac{1}{2} \text { val: } \\
& y_{2}=x^{1 / 2} \cdot \sum_{n=0}^{\infty} d n \cdot x^{n}=\sum_{n=0}^{\infty} d n \cdot x^{n+\frac{1}{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =2 x^{2} y 2^{\prime \prime}-x \cdot y 2^{\prime}+\left(1-x^{2}\right) y= \\
& =2 x^{2} \cdot \sum_{n=0}^{\infty} d n\left(n+\frac{1}{2}\right)\left(n-\frac{1}{2}\right) x^{n-\frac{3}{2}}-x \cdot \sum_{n=0}^{\infty} d n \cdot\left(n+\frac{1}{2}\right) x^{n-\frac{1}{2}}+\sum_{n=0}^{\infty} d n \cdot x^{n-\frac{1}{2}} x^{2} \sum_{n=0}^{\infty} d n \cdot x^{n+\frac{1}{2}}= \\
& =\sum_{n=0}^{\infty} 2 d n \cdot\left(n+\frac{1}{2}\right)\left(n-\frac{1}{2}\right) x^{n+\frac{1}{2}}-\sum_{n=0}^{\infty} d n \cdot\left(n+\frac{1}{2}\right) x^{n+\frac{1}{2}}+\sum_{n=0}^{\infty} d n \cdot x^{n+\frac{1}{2}}-\sum_{n=0}^{\infty} d n \cdot x^{n+\frac{5}{2}}= \\
& =\sum_{n=2}^{\infty} d n-2 \cdot x^{n+\frac{1}{2}}
\end{aligned}
$$

(11x):

Alaфopikes Eslowioas Legendre:
H ypalpuikn Jiapopitn esiowon סeutepns tásns:
(Fil: $\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+p(p+1) y=0$ (\quad пpay/iazikn' oraOepá)

 òda ra àada عiva ofuada aurns.

Oعiopnlle 3, бê. 266 :
Avo op -avesápentes dúoहis ins o. \&. Tou Legendre (EI) घival:

$$
\begin{aligned}
& y_{2}(x)=x+\sum_{n=1}^{\infty}(-1)^{n} \frac{(p-1)(p-3) \ldots(p-2 n+1)(p+2)(p+4) \ldots(p+2 n) x^{2 n+1}}{(2 n+1)!},|x|<1 .
\end{aligned}
$$

 ($\left.E L^{\prime}\right)^{\prime}:\left(1-x^{2}\right)^{\prime \prime}-2 x y^{\prime}+m \cdot(m+1) y=0$.

$y_{0}(x)=\frac{1}{2^{m}} \sum_{k=0}^{m 23} \frac{(-1)^{k}(2 m-2 k)!}{k!(m-k)!(m-2 k)!} \cdot x^{m-2 k}, x \in \mathbb{R}\left[y\right.$ dion uns $E 1^{\prime}$ av-v $y=c \cdot y_{0}$]
(fi) H 反.ع. (E1) ह̀xel en duon \tilde{y} nou opizetal $\gamma|a| x \mid<1$ he túno:

$$
\begin{aligned}
& \tilde{y}(x)=\int_{n=1}^{\infty} x+\sum_{n}^{\infty}(-1)^{n} \frac{(m-1)(m-3) \ldots(m-2 n+1)(m+2)(m+4) \ldots(m+2 n) \cdot x^{2 n+1}}{(2 n+1)!} \text {, maptro. } \\
& y(x)=\left[1+\sum_{n=1}^{\infty}(-1)^{n} \cdots \frac{m \cdot(m-2) \cdots(m-2 n+2)(m+1)(m+3) \cdot(m+2 n-1) x^{2 n}, m \text { перпою! }}{(2 n)!}\right.
\end{aligned}
$$

Giillor dúoas yo tal \tilde{y} gival γp ares. (ono $(-1,1))$.
Mpoтaon 2: Tia m kai n - in aprneikoús $\mu \in m \neq n: \int_{-1}^{+1} P_{m}(x) d x=0$

$$
\begin{aligned}
& \begin{array}{ll}
{\left[\left(1-x^{2}\right) p m^{\prime}\right]+m(m+1) p m=0} & \text { xpn } \\
{\left[\left(1-x^{2}\right) p n^{\prime}\right]+n(n+1) p n=0} & x p m
\end{array} \circlearrowleft \text { card } \mu \text { हतथ } \eta . \Rightarrow \\
& \Rightarrow\left\{\begin{array}{l}
\int_{-1}^{1}\left(\left(1-x^{2}\right) p m^{\prime}\right)^{\prime} p n d x+m(m+1) \int_{-1}^{1} p n \cdot p m d x=0 \Rightarrow \\
\int_{-1}^{1}\left(\left(1-x^{2}\right) p n^{\prime}\right)^{\prime} p m d x+n(n+1) \int_{-1}^{1} p n \cdot p m d x=0 \Longrightarrow
\end{array}\right. \\
& \left.\Rightarrow \int_{-1}^{1}\left[\left(\left(1-x^{2}\right) p m^{\prime}\right)^{\prime} p n-\left[\left(1-x^{2}\right) p n^{\prime}\right] p m\right] d x+[m(m+1)-n(n+1)]\right]_{-1}^{1} p n p p m d x=0 \\
& \Rightarrow \int_{-1}^{1}\left(\left(1-x^{2}\right) p m^{\prime}\right)^{\prime} p n d x=\left.\left(1-x^{2}\right) p m^{\prime} \cdot p n\right|_{-1} ^{1}-\int_{-1}^{1}\left(1-x^{2}\right) p m^{\prime} p n^{\prime} \partial x
\end{aligned}
$$ ofoivs, $\int_{-1}^{1}\left(\left(1-x^{2}\right) p n^{\prime}\right)^{\prime} p m d x$.

